Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653795

RESUMO

PURPOSE: Resistance training (RT) induces muscle growth at varying rates across RT phases, and evidence suggests that the muscle-molecular responses to training bouts become refined or attenuated in the trained state. This study examined how proteolysis-related biomarkers and extracellular matrix (ECM) remodeling factors respond to a bout of RT in the untrained (UT) and trained (T) state. METHODS: Participants (19 women and 19 men) underwent 10 weeks of RT. Biopsies of vastus lateralis were collected before and after (24 h) the first (UT) and last (T) sessions. Vastus lateralis cross-sectional area (CSA) was assessed before and after the experimental period. RESULTS: There were increases in muscle and type II fiber CSAs. In both the UT and T states, calpain activity was upregulated and calpain-1/-2 protein expression was downregulated from Pre to 24 h. Calpain-2 was higher in the T state. Proteasome activity and 20S proteasome protein expression were upregulated from Pre to 24 h in both the UT and T. However, proteasome activity levels were lower in the T state. The expression of poly-ubiquitinated proteins was unchanged. MMP activity was downregulated, and MMP-9 protein expression was elevated from Pre to 24 h in UT and T. Although MMP-14 protein expression was acutely unchanged, this marker was lower in T state. TIMP-1 protein levels were reduced Pre to 24 h in UT and T, while TIMP-2 protein levels were unchanged. CONCLUSION: Our results are the first to show that RT does not attenuate the acute-induced response of proteolysis and ECM remodeling-related biomarkers.

2.
FASEB J ; 38(8): e23621, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38651653

RESUMO

Denervated myofibers and senescent cells are hallmarks of skeletal muscle aging. However, sparse research has examined how resistance training affects these outcomes. We investigated the effects of unilateral leg extensor resistance training (2 days/week for 8 weeks) on denervated myofibers, senescent cells, and associated protein markers in apparently healthy middle-aged participants (MA, 55 ± 8 years old, 17 females, 9 males). We obtained dual-leg vastus lateralis (VL) muscle cross-sectional area (mCSA), VL biopsies, and strength assessments before and after training. Fiber cross-sectional area (fCSA), satellite cells (Pax7+), denervated myofibers (NCAM+), senescent cells (p16+ or p21+), proteins associated with denervation and senescence, and senescence-associated secretory phenotype (SASP) proteins were analyzed from biopsy specimens. Leg extensor peak torque increased after training (p < .001), while VL mCSA trended upward (interaction p = .082). No significant changes were observed for Type I/II fCSAs, NCAM+ myofibers, or senescent (p16+ or p21+) cells, albeit satellite cells increased after training (p = .037). While >90% satellite cells were not p16+ or p21+, most p16+ and p21+ cells were Pax7+ (>90% on average). Training altered 13 out of 46 proteins related to muscle-nerve communication (all upregulated, p < .05) and 10 out of 19 proteins related to cellular senescence (9 upregulated, p < .05). Only 1 out of 17 SASP protein increased with training (IGFBP-3, p = .031). In conclusion, resistance training upregulates proteins associated with muscle-nerve communication in MA participants but does not alter NCAM+ myofibers. Moreover, while training increased senescence-related proteins, this coincided with an increase in satellite cells but not alterations in senescent cell content or SASP proteins. These latter findings suggest shorter term resistance training is an unlikely inducer of cellular senescence in apparently healthy middle-aged participants. However, similar study designs are needed in older and diseased populations before definitive conclusions can be drawn.


Assuntos
Senescência Celular , Treinamento de Força , Humanos , Treinamento de Força/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Senescência Celular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Biomarcadores/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Adulto , Músculo Quadríceps/metabolismo , Músculo Quadríceps/inervação
3.
Aging (Albany NY) ; 162024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643460

RESUMO

The skeletal muscle proteome alterations to aging and resistance training have been reported in prior studies. However, conventional proteomics in skeletal muscle typically yields wide protein abundance ranges that mask the detection of lowly expressed proteins. Thus, we adopted a novel deep proteomics approach whereby myofibril (MyoF) and non-MyoF fractions were separately subjected to protein corona nanoparticle complex formation prior to digestion and Liquid Chromatography Mass Spectrometry (LC-MS). Specifically, we investigated MyoF and non-MyoF proteomic profiles of the vastus lateralis muscle of younger (Y, 22±2 years old; n=5) and middle-aged participants (MA, 56±8 years old; n=6). Additionally, MA muscle was analyzed following eight weeks of resistance training (RT, 2d/week). Across all participants, the number of non-MyoF proteins detected averaged to be 5,645±266 (range: 4,888-5,987) and the number of MyoF proteins detected averaged to be 2,611±326 (range: 1,944-3,101). Differences in the non-MyoF (8.4%) and MyoF (2.5%) proteomes were evident between age cohorts, and most differentially expressed non-MyoF proteins (447/543) were more enriched in MA versus Y. Biological processes in the non-MyoF fraction were predicted to be operative in MA versus Y including increased cellular stress, mRNA splicing, translation elongation, and ubiquitin-mediated proteolysis. RT in MA participants only altered ~0.3% of MyoF and ~1.0% of non-MyoF proteomes. In summary, aging and RT predominantly affect non-contractile proteins in skeletal muscle. Additionally, marginal proteome adaptations with RT suggest more rigorous training may stimulate more robust effects or that RT, regardless of age, subtly alters basal state skeletal muscle protein abundances.

4.
Elife ; 122024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466320

RESUMO

An increase in mechanical loading, such as that which occurs during resistance exercise, induces radial growth of muscle fibers (i.e. an increase in cross-sectional area). Muscle fibers are largely composed of myofibrils, but whether radial growth is mediated by an increase in the size of the myofibrils (i.e. myofibril hypertrophy) and/or the number of myofibrils (i.e. myofibrillogenesis) is not known. Electron microscopy (EM) can provide images with the level of resolution that is needed to address this question, but the acquisition and subsequent analysis of EM images is a time- and cost-intensive process. To overcome this, we developed a novel method for visualizing myofibrils with a standard fluorescence microscope (fluorescence imaging of myofibrils with image deconvolution [FIM-ID]). Images from FIM-ID have a high degree of resolution and contrast, and these properties enabled us to develop pipelines for automated measurements of myofibril size and number. After extensively validating the automated measurements, we used both mouse and human models of increased mechanical loading to discover that the radial growth of muscle fibers is largely mediated by myofibrillogenesis. Collectively, the outcomes of this study offer insight into a fundamentally important topic in the field of muscle growth and provide future investigators with a time- and cost-effective means to study it.


Approximately 45% of human body mass is made of skeletal muscle. These muscles contract and relax to provide the mechanical forces needed for breathing, moving, keeping warm and performing many other essential processes. Both sedentary and active adults lose approximately 30-40% of this muscle mass by the age of 80, increasing their risk of disease, disability and death. As a result, there is much interest in developing therapies that can restore, maintain and increase muscle mass in older individuals. Muscles are made of multiple fibers that are in turn largely composed of smaller units known as myofibrils. Previous studies have shown that performing resistance training or other exercise that increases the mechanical loads placed on muscles stimulates muscle growth. This growth is largely due to increased girth of the existing muscle fibers. However, it remained unclear whether this was due to myofibrils growing in size, increasing in number, or a combination of both. To address this question, Jorgenson et al. developed a fluorescence imaging method called FIM-ID to count the number and measure the size of myofibrils within cross-sections of skeletal muscle. Using FIM-ID to study samples of mouse and human muscle fibers then revealed that increasing mechanical loads on muscles increased the number of myofibrils and this was largely responsible for muscle fiber growth. FIM-ID mostly relies on common laboratory instruments and free open-source software is used to count and measure the myofibrils. Jorgenson et al. hope that this will allow as many other researchers as possible to use FIM-ID to study myofibrils in the future. A better understanding of how the body controls the number of myofibrils may lead to the development of therapies that can mimic the effects of exercise on muscles to maintain or even increase muscle mass in human patients.


Assuntos
Músculo Esquelético , Miofibrilas , Humanos , Animais , Camundongos , Fibras Musculares Esqueléticas , Hipertrofia , Imagem Óptica
5.
Front Physiol ; 15: 1368646, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444764

RESUMO

Blood flow restriction applied during low-load resistance training (LL-BFR) induces a similar increase in the cross-sectional area of muscle fibers (fCSA) compared to traditional high-load resistance training (HL-RT). However, it is unclear whether LL-BFR leads to differential changes in myofibrillar spacing in muscle fibers and/or extracellular area compared to HL-RT. Therefore, this study aimed to investigate whether the hypertrophy of type I and II fibers induced by LL-BFR or HL-RT is accompanied by differential changes in myofibrillar and non-myofibrillar areas. In addition, we examined if extracellular spacing was differentially affected between these two training protocols. Twenty recreationally active participants were assigned to LL-BFR or HL-RT groups and underwent a 6-week training program. Muscle biopsies were taken before and after the training period. The fCSA of type I and II fibers, the area occupied by myofibrillar and non-myofibrillar components, and extracellular spacing were analyzed using immunohistochemistry techniques. Despite the significant increase in type II and mean (type I + II) fCSA (p < 0.05), there were no significant changes in the proportionality of the myofibrillar and non-myofibrillar areas [∼86% and ∼14%, respectively (p > 0.05)], indicating that initial adaptations to LL-BFR are primarily characterized by conventional hypertrophy rather than disproportionate non-myofibrillar expansion. Additionally, extracellular spacing was not significantly altered between protocols. In summary, our study reveals that LL-BFR, like HL-RT, induces skeletal muscle hypertrophy with proportional changes in the areas occupied by myofibrillar, non-myofibrillar, and extracellular components.

6.
Front Physiol ; 14: 1281702, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841321

RESUMO

Although several reports have hypothesized that exercise may increase skeletal muscle protein lactylation, empirical evidence in humans is lacking. Thus, we adopted a multi-faceted approach to examine if acute and subchronic resistance training (RT) altered skeletal muscle protein lactylation levels. In mice, we also sought to examine if surgical ablation-induced plantaris hypertrophy coincided with increases in muscle protein lactylation. To examine acute responses, participants' blood lactate concentrations were assessed before, during, and after eight sets of an exhaustive lower body RT bout (n = 10 trained college-aged men). Vastus lateralis biopsies were also taken before, 3-h post, and 6-h post-exercise to assess muscle protein lactylation. To identify training responses, another cohort of trained college-aged men (n = 14) partook in 6 weeks of lower-body RT (3x/week) and biopsies were obtained before and following the intervention. Five-month-old C57BL/6 mice were subjected to 10 days of plantaris overload (OV, n = 8) or served as age-matched sham surgery controls (Sham, n = 8). Although acute resistance training significantly increased blood lactate responses ∼7.2-fold (p < 0.001), cytoplasmic and nuclear protein lactylation levels were not significantly altered at the post-exercise time points, and no putative lactylation-dependent mRNA was altered following exercise. Six weeks of RT did not alter cytoplasmic protein lactylation (p = 0.800) despite significantly increasing VL muscle size (+3.5%, p = 0.037), and again, no putative lactylation-dependent mRNA was significantly affected by training. Plantaris muscles were larger in OV versus Sham mice (+43.7%, p < 0.001). However, cytoplasmic protein lactylation was similar between groups (p = 0.369), and nuclear protein lactylation was significantly lower in OV versus Sham mice (p < 0.001). The current null findings, along with other recent null findings in the literature, challenge the thesis that lactate has an appreciable role in promoting skeletal muscle hypertrophy.

7.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745462

RESUMO

An increase in mechanical loading, such as that which occurs during resistance exercise, induces radial growth of muscle fibers (i.e., an increase in cross-sectional area). Muscle fibers are largely composed of myofibrils, but whether radial growth is mediated by an increase in the size of the myofibrils (i.e., myofibril hypertrophy) and/or the number of myofibrils (i.e., myofibrillogenesis) is not known. Electron microscopy (EM) can provide images with the level of resolution that is needed to address this question, but the acquisition and subsequent analysis of EM images is a time- and cost-intensive process. To overcome this, we developed a novel method for visualizing myofibrils with a standard fluorescence microscope (FIM-ID). Images from FIM-ID have a high degree of resolution and contrast, and these properties enabled us to develop pipelines for automated measurements of myofibril size and number. After extensively validating the automated measurements, we used both mouse and human models of increased mechanical loading to discover that the radial growth of muscle fibers is largely mediated by myofibrillogenesis. Collectively, the outcomes of this study offer insight into a fundamentally important topic in the field of muscle growth and provide future investigators with a time- and cost-effective means to study it.

8.
Exp Physiol ; 108(10): 1268-1281, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589512

RESUMO

We recently reported that vastus lateralis (VL) cross-sectional area (CSA) increases after 7 weeks of resistance training (RT, 2 days/week), with declines occurring following 7 weeks of subsequent treadmill high-intensity interval training (HIIT) (3 days/week). Herein, we examined the effects of this training paradigm on skeletal muscle proteolytic markers. VL biopsies were obtained from 11 untrained college-aged males at baseline (PRE), after 7 weeks of RT (MID), and after 7 weeks of HIIT (POST). Tissues were analysed for proteolysis markers, and in vitro experiments were performed to provide additional insights. Atrogene mRNAs (TRIM63, FBXO32, FOXO3A) were upregulated at POST versus both PRE and MID (P < 0.05). 20S proteasome core protein abundance increased at POST versus PRE (P = 0.031) and MID (P = 0.049). 20S proteasome activity, and protein levels for calpain-2 and Beclin-1 increased at MID and POST versus PRE (P < 0.05). Ubiquitinated proteins showed model significance (P = 0.019) with non-significant increases at MID and POST (P > 0.05). in vitro experiments recapitulated the training phenotype when stimulated with a hypertrophic stimulus (insulin-like growth factor 1; IGF1) followed by a subsequent AMP-activated protein kinase activator (5-aminoimidazole-4-carboxamide ribonucleotide; AICAR), as demonstrated by larger myotube diameter in IGF1-treated cells versus IGF1 followed by AICAR treatments (I+A; P = 0.017). Muscle protein synthesis (MPS) levels were also greater in IGF1-treated versus I+A myotubes (P < 0.001). In summary, the loss in RT-induced VL CSA with HIIT coincided with increases in several proteolytic markers, and sustained proteolysis may have driven this response. Moreover, while not measured in humans, we interpret our in vitro data to suggest that (unlike RT) HIIT does not stimulate MPS. NEW FINDINGS: What is the central question of this study? Determining if HIIT-induced reductions in muscle hypertrophy following a period of resistance training coincided with increases in proteolytic markers. What is the main finding and its importance? Several proteolytic markers were elevated during the HIIT training period implying that increases in muscle proteolysis may have played a role in HIIT-induced reductions in muscle hypertrophy.


Assuntos
Treinamento Intervalado de Alta Intensidade , Treinamento de Força , Humanos , Masculino , Adulto Jovem , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Perna (Membro) , Músculo Esquelético/fisiologia , Hipertrofia/metabolismo
9.
J Strength Cond Res ; 37(12): 2326-2332, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506190

RESUMO

ABSTRACT: Godwin, JS, Telles, GD, Vechin, FC, Conceição, MS, Ugrinowitsch, C, Roberts, MD, and Libardi, CA. Time course of proteolysis biomarker responses to resistance, high-intensity interval, and concurrent exercise bouts. J Strength Cond Res 37(12): 2326-2332, 2023-Concurrent exercise (CE) combines resistance exercise (RE) and high-intensity interval exercise (HIIE) in the same training routine, eliciting hypertrophy, strength, and cardiovascular benefits over time. Some studies suggest that CE training may hamper muscle hypertrophy and strength adaptations compared with RE training alone. However, the underlying mechanisms related to protein breakdown are not well understood. The purpose of this study was to examine how a bout of RE, HIIE, or CE affected ubiquitin-proteasome and calpain activity and the expression of a few associated genes, markers of skeletal muscle proteolysis. Nine untrained male subjects completed 1 bout of RE (4 sets of 8-12 reps), HIIE (12 × 1 minute sprints at V̇ o2 peak minimum velocity), and CE (RE followed by HIIE), in a crossover design, separated by 1-week washout periods. Muscle biopsies were obtained from the vastus lateralis before (Pre), immediately post, 4 hours (4 hours), and 8 hours (8 hours) after exercise. FBXO32 mRNA expression increased immediately after exercise (main time effect; p < 0.05), and RE and CE presented significant overall values compared with HIIE ( p < 0.05). There was a marginal time effect for calpain-2 mRNA expression ( p < 0.05), with no differences between time points ( p > 0.05). No significant changes occurred in TRIM63/MuRF-1 and FOXO3 mRNA expression, or 20S proteasome or calpain activities ( p > 0.05). In conclusion, our findings suggest that 1 bout of CE does not promote greater changes in markers of skeletal muscle proteolysis compared with 1 bout of RE or HIIE.


Assuntos
Calpaína , Treinamento Intervalado de Alta Intensidade , Humanos , Masculino , Proteólise , Calpaína/genética , Calpaína/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Hipertrofia , RNA Mensageiro/metabolismo
10.
J Physiol ; 601(17): 3825-3846, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470322

RESUMO

We investigated the effects of performing a period of resistance training (RT) on the performance and molecular adaptations to a subsequent period of endurance training (ET). Twenty-five young adults were divided into an RT+ET group (n = 13), which underwent 7 weeks of RT followed by 7 weeks of ET, and an ET-only group (n = 12), which performed 7 weeks of ET. Body composition, endurance performance and muscle biopsies were collected before RT (T1, baseline for RT+ET), before ET (T2, after RT for RT+ET and baseline for ET) and after ET (T3). Immunohistochemistry was performed to determine fibre cross-sectional area (fCSA), myonuclear content, myonuclear domain size, satellite cell number and mitochondrial content. Western blots were used to quantify markers of mitochondrial remodelling. Citrate synthase activity and markers of ribosome content were also investigated. RT improved body composition and strength, increased vastus lateralis thickness, mixed and type II fCSA, myonuclear number, markers of ribosome content, and satellite cell content (P < 0.050). In response to ET, both groups similarly decreased body fat percentage (P < 0.0001) and improved endurance performance (e.g. V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ , and speed at which the onset of blood lactate accumulation occurred, P < 0.0001). Levels of mitochondrial complexes I-IV in the ET-only group increased 32-66%, while those in the RT+ET group increased 1-11% (time, P < 0.050). Additionally, mixed fibre relative mitochondrial content increased 15% in the ET-only group but decreased 13% in the RT+ET group (interaction, P = 0.043). In conclusion, RT performed prior to ET had no additional benefits to ET adaptations. Moreover, prior RT seemed to impair mitochondrial adaptations to ET. KEY POINTS: Resistance training is largely underappreciated as a method to improve endurance performance, despite reports showing it may improve mitochondrial function. Although several concurrent training studies are available, in this study we investigated the effects of performing a period of resistance training on the performance and molecular adaptations to subsequent endurance training. Prior resistance training did not improve endurance performance and impaired most mitochondrial adaptations to subsequent endurance training, but this effect may have been a result of detraining from resistance training.


Assuntos
Treino Aeróbico , Treinamento de Força , Masculino , Adulto Jovem , Humanos , Treinamento de Força/métodos , Adaptação Fisiológica , Composição Corporal/fisiologia , Aclimatação , Músculo Esquelético/fisiologia
11.
bioRxiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333259

RESUMO

We examined the myofibrillar (MyoF) and non-myofibrillar (non-MyoF) proteomic profiles of the vastus lateralis (VL) muscle of younger (Y, 22±2 years old; n=5) and middle-aged participants (MA, 56±8 years old; n=6), and MA following eight weeks of knee extensor resistance training (RT, 2d/week). Shotgun/bottom-up proteomics in skeletal muscle typically yields wide protein abundance ranges that mask lowly expressed proteins. Thus, we adopted a novel approach whereby the MyoF and non-MyoF fractions were separately subjected to protein corona nanoparticle complex formation prior to digestion and Liquid Chromatography Mass Spectrometry (LC-MS) analysis. A total of 10,866 proteins (4,421 MyoF and 6,445 non-MyoF) were identified. Across all participants, the number of non-MyoF proteins detected averaged to be 5,645±266 (range: 4,888-5,987) and the number of MyoF proteins detected averaged to be 2,611±326 (range: 1,944-3,101). Differences in the non-MyoF (8.4%) and MyoF (2.5%) proteome were evident between age cohorts. Further, most of these age-related non-MyoF proteins (447/543) were more enriched in MA versus Y. Several biological processes in the non-MyoF fraction were predicted to be operative in MA versus Y including (but not limited to) increased cellular stress, mRNA splicing, translation elongation, and ubiquitin-mediated proteolysis. Non-MyoF proteins associated with splicing and proteostasis were further interrogated, and in agreement with bioinformatics, alternative protein variants, spliceosome-associated proteins (snRNPs), and proteolysis-related targets were more abundant in MA versus Y. RT in MA non-significantly increased VL muscle cross-sectional area (+6.5%, p=0.066) and significantly increased knee extensor strength (+8.7%, p=0.048). However, RT modestly altered the MyoF (~0.3%, 11 upregulated and two downregulated proteins) and non-MyoF proteomes (~1.0%, 56 upregulated and eight downregulated proteins, p<0.01). Further, RT did not affect predicted biological processes in either fraction. Although participant numbers were limited, these preliminary results using a novel deep proteomic approach in skeletal muscle suggest that aging and RT predominantly affects protein abundances in the non-contractile protein pool. However, the marginal proteome adaptations occurring with RT suggest either: a) this may be an aging-associated phenomenon, b) more rigorous RT may stimulate more robust effects, or c) RT, regardless of age, subtly affects skeletal muscle protein abundances in the basal state.

12.
Physiol Rep ; 11(9): e15679, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37144554

RESUMO

Limited research exists examining how resistance training to failure affects applied outcomes and single motor unit characteristics in previously trained individuals. Herein, resistance-trained adults (24 ± 3 years old, self-reported resistance training experience was 6 ± 4 years, 11 men and 8 women) were randomly assigned to either a low-repetitions-in-reserve (RIR; i.e., training near failure, n = 10) or high-RIR (i.e., not training near failure, n = 9) group. All participants implemented progressive overload during 5 weeks where low-RIR performed squat, bench press, and deadlift twice weekly and were instructed to end each training set with 0-1 RIR. high-RIR performed identical training except for being instructed to maintain 4-6 RIR after each set. During week 6, participants performed a reduced volume-load. The following were assessed prior to and following the intervention: (i) vastus lateralis (VL) muscle cross-sectional area (mCSA) at multiple sites; (ii) squat, bench press, and deadlift one-repetition maximums (1RMs); and (iii) maximal isometric knee extensor torque and VL motor unit firing rates during an 80% maximal voluntary contraction. Although RIR was lower in the low- versus high-RIR group during the intervention (p < 0.001), total training volume did not significantly differ between groups (p = 0.222). There were main effects of time for squat, bench press, and deadlift 1RMs (all p-values < 0.05), but no significant condition × time interactions existed for these or proximal/middle/distal VL mCSA data. There were significant interactions for the slope and y-intercept of the motor unit mean firing rate versus recruitment threshold relationship. Post hoc analyses indicated low-RIR group slope values decreased and y-intercept values increased after training suggesting low-RIR training increased lower-threshold motor unit firing rates. This study provides insight into how resistance training in proximity to failure affects strength, hypertrophy, and single motor unit characteristics, and may inform those who aim to program for resistance-trained individuals.


Assuntos
Treinamento de Força , Masculino , Humanos , Adulto , Feminino , Adulto Jovem , Músculo Quadríceps/fisiologia , Adaptação Fisiológica , Aclimatação , Hipertrofia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia
13.
J Appl Physiol (1985) ; 134(5): 1240-1255, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37022967

RESUMO

The effects of low-load resistance training with blood flow restriction (BFR) on hypertrophy of type I/II myofibers remains unclear, especially in females. The purpose of the present study is to examine changes in type I/II myofiber cross-sectional area (fCSA) and muscle CSA (mCSA) of the vastus lateralis (VL) from before (Pre) to after (Post) 6 wk of high-load resistance training (HL; n = 15, 8 females) and low-load resistance training with BFR (n = 16, 8 females). Mixed-effects models were used to analyze fCSA with group (HL, BFR), sex (M, F), fiber type (I, II), and time (Pre, Post) included as factors. mCSA increased from pre- to posttraining (P < 0.001, d = 0.91) and was greater in males compared with females (P < 0.001, d = 2.26). Type II fCSA increased pre- to post-HL (P < 0.05, d = 0.46) and was greater in males compared with females (P < 0.05, d = 0.78). There were no significant increases in fCSA pre- to post-BFR for either fiber type or sex. Cohen's d, however, revealed moderate effect sizes in type I and II fCSA for males (d = 0.59 and 0.67), although this did not hold true for females (d = 0.29 and 0.34). Conversely, the increase in type II fCSA was greater for females than for males after HL. In conclusion, low-load resistance training with BFR may not promote myofiber hypertrophy to the level of HL resistance training, and similar responses were generally observed for males and females. In contrast, comparable effect sizes for mCSA and 1-repetition maximum (1RM) between groups suggest that BFR could play a role in a resistance training program.NEW & NOTEWORTHY This is the first study, to our knowledge, to examine myofiber hypertrophy from low-load resistance training with blood flow restriction (BFR) in females. Although this type of training did not result in myofiber hypertrophy, there were comparable increases in muscle cross-sectional area compared with high-load resistance training. These findings possibly highlight that males and females respond in a similar manner to high-load resistance training and low-load resistance training with BFR.


Assuntos
Treinamento de Força , Masculino , Humanos , Feminino , Fluxo Sanguíneo Regional/fisiologia , Força Muscular/fisiologia , Músculo Quadríceps/fisiologia , Hipertrofia , Músculo Esquelético/fisiologia
14.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066356

RESUMO

We investigated the effects of performing a period of resistance training (RT) on the performance and molecular adaptations to a subsequent period of endurance training (ET). Twenty-five young adults were divided into RT+ET (n=13), which underwent seven weeks of RT followed by seven weeks of ET, and ET-only (n=12), which performed seven weeks of ET. Body composition, endurance performance, and muscle biopsies were collected before RT (T1, baseline for RT+ET), before ET (T2, post RT for RT+ET and baseline for ET), and after ET (T3). Immunohistochemistry was performed to determine fiber cross-sectional area (fCSA), myonuclear content, myonuclear domain size, satellite cell number, and mitochondrial content. Western blots were used to quantify markers of mitochondrial remodeling. Citrate synthase activity and markers of ribosome content were also investigated. Resistance training improved body composition and strength, increased vastus lateralis thickness, mixed and type II fCSA, myonuclear number, markers of ribosome content, and satellite cell content (p<0.050). In response to ET, both groups similarly decreased body fat percentage and improved endurance performance (e.g., VO 2 max, and speed at which the onset of blood lactate accumulation occurred during the VO 2 max test). Levels of mitochondrial complexes I-IV in the ET-only group increased 32-66%, while the RT+ET group increased 1-11%. Additionally, mixed fiber relative mitochondrial content increased 15% in the ET-only group but decreased 13% in the RT+ET group. In conclusion, RT performed prior to ET had no additional benefits to ET adaptations. Moreover, prior RT seemed to impair mitochondrial adaptations to ET. KEY POINTS SUMMARY: Resistance training is largely underappreciated as a method to improve endurance performance, despite reports showing it may improve mitochondrial function.Although several concurrent training studies are available, in this study we investigated the effects of performing a period resistance training on the performance and molecular adaptations to subsequent endurance training.Prior resistance training did not improve endurance performance and impaired most mitochondrial adaptations to subsequent endurance training, but that seemed to be a result of detraining from resistance training.

15.
Cells ; 12(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980239

RESUMO

Although transcriptome profiling has been used in several resistance training studies, the associated analytical approaches seldom provide in-depth information on individual genes linked to skeletal muscle hypertrophy. Therefore, a secondary analysis was performed herein on a muscle transcriptomic dataset we previously published involving trained college-aged men (n = 11) performing two resistance exercise bouts in a randomized and crossover fashion. The lower-load bout (30 Fail) consisted of 8 sets of lower body exercises to volitional fatigue using 30% one-repetition maximum (1 RM) loads, whereas the higher-load bout (80 Fail) consisted of the same exercises using 80% 1 RM loads. Vastus lateralis muscle biopsies were collected prior to (PRE), 3 h, and 6 h after each exercise bout, and 58 genes associated with skeletal muscle hypertrophy were manually interrogated from our prior microarray data. Select targets were further interrogated for associated protein expression and phosphorylation induced-signaling events. Although none of the 58 gene targets demonstrated significant bout x time interactions, ~57% (32 genes) showed a significant main effect of time from PRE to 3 h (15↑ and 17↓, p < 0.01), and ~26% (17 genes) showed a significant main effect of time from PRE to 6 h (8↑ and 9↓, p < 0.01). Notably, genes associated with the myostatin (9 genes) and mammalian target of rapamycin complex 1 (mTORC1) (9 genes) signaling pathways were most represented. Compared to mTORC1 signaling mRNAs, more MSTN signaling-related mRNAs (7 of 9) were altered post-exercise, regardless of the bout, and RHEB was the only mTORC1-associated mRNA that was upregulated following exercise. Phosphorylated (phospho-) p70S6K (Thr389) (p = 0.001; PRE to 3 h) and follistatin protein levels (p = 0.021; PRE to 6 h) increased post-exercise, regardless of the bout, whereas phospho-AKT (Thr389), phospho-mTOR (Ser2448), and myostatin protein levels remained unaltered. These data continue to suggest that performing resistance exercise to volitional fatigue, regardless of load selection, elicits similar transient mRNA and signaling responses in skeletal muscle. Moreover, these data provide further evidence that the transcriptional regulation of myostatin signaling is an involved mechanism in response to resistance exercise.


Assuntos
Músculo Esquelético , Treinamento de Força , Humanos , Masculino , Adulto Jovem , Expressão Gênica , Hipertrofia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Miostatina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
J Appl Physiol (1985) ; 134(3): 731-741, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36759158

RESUMO

We determined if skeletal muscle extracellular matrix (ECM) content and remodeling markers adapted with resistance training or were associated with hypertrophic outcomes. Thirty-eight untrained males (21 ± 3 yr) participated in whole body resistance training (10 wk, 2 × weekly). Participants completed testing [ultrasound, peripheral quantitative computed tomography (pQCT)] and donated a vastus lateralis (VL) biopsy 1 wk before training and 72 h following the last training bout. Higher responders (HR, n = 10) and lower responders (LR, n = 10) were stratified based on a composite score considering changes in pQCT-derived mid-thigh cross-sectional area (mCSA), ultrasound-derived VL thickness, and mean fiber cross-sectional area (fCSA). In all participants, training reduced matrix metalloprotease (MMP)-14 protein (P < 0.001) and increased satellite cell abundance (P < 0.001); however, VL fascial thickness, ECM protein content per myofiber, MMP-2/-9 protein content, tissue inhibitor of metalloproteinase (TIMP)-1/-2 protein content, collagen-1/-4 protein content, macrophage abundance, or fibroadipogenic progenitor cell abundance were not altered. Regarding responder analysis, MMP-14 exhibited an interaction (P = 0.007), and post hoc analysis revealed higher protein content in HR versus LR before training (P = 0.026) and a significant decrease from pre to posttraining in HR only (P = 0.002). In summary, basal skeletal muscle ECM markers are minimally affected with 10 wk of resistance training, and these findings could be related to not capturing more dynamic alterations in the assayed markers earlier in training. However, the downregulation in MMP-14 in college-aged men classified as HR is a novel finding and warrants continued investigation, and further research is needed to delineate muscle connective tissue strength attributes between HR and LR.NEW & NOTEWORTHY Although past studies have examined aspects of extracellular matrix remodeling in relation to mechanical overload or resistance training, this study serves to expand our knowledge on a multitude of extracellular matrix markers and whether these markers adapt to resistance training or are associated with differential hypertrophic responses.


Assuntos
Treinamento de Força , Masculino , Humanos , Adulto Jovem , Treinamento de Força/métodos , Metaloproteinase 14 da Matriz/metabolismo , Músculo Esquelético/fisiologia , Matriz Extracelular/metabolismo , Músculo Quadríceps/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Hipertrofia/metabolismo
17.
Cells ; 12(2)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36672198

RESUMO

We sought to determine the skeletal muscle genome-wide DNA methylation and mRNA responses to one bout of lower load (LL) versus higher load (HL) resistance exercise. Trained college-aged males (n = 11, 23 ± 4 years old, 4 ± 3 years self-reported training) performed LL or HL bouts to failure separated by one week. The HL bout (i.e., 80 Fail) consisted of four sets of back squats and four sets of leg extensions to failure using 80% of participants estimated one-repetition maximum (i.e., est. 1-RM). The LL bout (i.e., 30 Fail) implemented the same paradigm with 30% of est. 1-RM. Vastus lateralis muscle biopsies were collected before, 3 h, and 6 h after each bout. Muscle DNA and RNA were batch-isolated and analyzed using the 850k Illumina MethylationEPIC array and Clariom S mRNA microarray, respectively. Performed repetitions were significantly greater during the 30 Fail versus 80 Fail (p < 0.001), although total training volume (sets × reps × load) was not significantly different between bouts (p = 0.571). Regardless of bout, more CpG site methylation changes were observed at 3 h versus 6 h post exercise (239,951 versus 12,419, respectively; p < 0.01), and nuclear global ten-eleven translocation (TET) activity, but not global DNA methyltransferase activity, increased 3 h and 6 h following exercise regardless of bout. The percentage of genes significantly altered at the mRNA level that demonstrated opposite DNA methylation patterns was greater 3 h versus 6 h following exercise (~75% versus ~15%, respectively). Moreover, high percentages of genes that were up- or downregulated 6 h following exercise also demonstrated significantly inversed DNA methylation patterns across one or more CpG sites 3 h following exercise (65% and 82%, respectively). While 30 Fail decreased DNA methylation across various promoter regions versus 80 Fail, transcriptome-wide mRNA and bioinformatics indicated that gene expression signatures were largely similar between bouts. Bioinformatics overlay of DNA methylation and mRNA expression data indicated that genes related to "Focal adhesion," "MAPK signaling," and "PI3K-Akt signaling" were significantly affected at the 3 h and 6 h time points, and again this was regardless of bout. In conclusion, extensive molecular profiling suggests that post-exercise alterations in the skeletal muscle DNA methylome and mRNA transcriptome elicited by LL and HL training bouts to failure are largely similar, and this could be related to equal volumes performed between bouts.


Assuntos
Metilação de DNA , Treinamento de Força , Masculino , Humanos , Adulto Jovem , Adulto , Metilação de DNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Músculo Esquelético/metabolismo , DNA/metabolismo
18.
J Appl Physiol (1985) ; 134(3): 491-507, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36633866

RESUMO

We sought to determine if the myofibrillar protein synthetic (MyoPS) response to a naïve resistance exercise (RE) bout, or chronic changes in satellite cell number and muscle ribosome content, were associated with hypertrophic outcomes in females or differed in those who classified as higher (HR) or lower (LR) responders to resistance training (RT). Thirty-four untrained college-aged females (23.4 ± 3.4 kg/m2) completed a 10-wk RT protocol (twice weekly). Body composition and leg imaging assessments, a right leg vastus lateralis biopsy, and strength testing occurred before and following the intervention. A composite score, which included changes in whole body lean/soft tissue mass (LSTM), vastus lateralis (VL) muscle cross-sectional area (mCSA), midthigh mCSA, and deadlift strength, was used to delineate upper and lower HR (n = 8) and LR (n = 8) quartiles. In all participants, training significantly (P < 0.05) increased LSTM, VL mCSA, midthigh mCSA, deadlift strength, mean muscle fiber cross-sectional area, satellite cell abundance, and myonuclear number. Increases in LSTM (P < 0.001), VL mCSA (P < 0.001), midthigh mCSA (P < 0.001), and deadlift strength (P = 0.001) were greater in HR vs. LR. The first-bout 24-hour MyoPS response was similar between HR and LR (P = 0.367). While no significant responder × time interaction existed for muscle total RNA concentrations (i.e., ribosome content) (P = 0.888), satellite cell abundance increased in HR (P = 0.026) but not LR (P = 0.628). Pretraining LSTM (P = 0.010), VL mCSA (P = 0.028), and midthigh mCSA (P < 0.001) were also greater in HR vs. LR. Female participants with an enhanced satellite cell response to RT, and more muscle mass before RT, exhibited favorable resistance training adaptations.NEW & NOTEWORTHY This study continues to delineate muscle biology differences between lower and higher responders to resistance training and is unique in that a female population was interrogated. As has been reported in prior studies, increases in satellite cell numbers are related to positive responses to resistance training. Satellite cell responsivity, rather than changes in muscle ribosome content per milligrams of tissue, may be a more important factor in delineating resistance-training responses in women.


Assuntos
Doenças Musculares , Treinamento de Força , Humanos , Adulto , Feminino , Adulto Jovem , Treinamento de Força/métodos , Fibras Musculares Esqueléticas/fisiologia , Músculo Quadríceps , Exercício Físico , Músculo Esquelético/fisiologia , Força Muscular/fisiologia
19.
Physiol Rep ; 10(24): e15542, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36543327

RESUMO

We investigated the effects of aging and long-term physical activity on markers of mitochondrial function and dynamics in the cortex and cerebellum of female rats. Additionally, we interrogated markers of oxidative damage and antioxidants. Thirty-four female Lewis rats were separated into three groups. A young group (YNG, n = 10) was euthanized at 6 months of age. Two other groups were aged to 15 months and included a physical activity group (MA-PA, n = 12) and a sedentary group (MA-SED, n = 12). There were no age effects for any of the variables investigated, except for SOD2 protein levels in the cortex (+6.5%, p = 0.012). Long-term physical activity increased mitochondrial complex IV activity in the cortex compared to YNG (+85%, p = 0.016) and MA-SED (+82%, p = 0.023) and decreased carbonyl levels in the cortex compared to YNG (-12.49%, p = 0.034). Our results suggest that the mitochondrial network and redox state of the brain of females may be more resilient to the aging process than initially thought. Further, voluntary wheel running had minimal beneficial effects on brain markers of oxidative damage and mitochondrial physiology.


Assuntos
Atividade Motora , Condicionamento Físico Animal , Ratos , Animais , Feminino , Atividade Motora/fisiologia , Condicionamento Físico Animal/métodos , Ratos Endogâmicos Lew , Envelhecimento/fisiologia , Mitocôndrias/metabolismo , Cerebelo , Oxirredução
20.
Exp Physiol ; 107(11): 1216-1224, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053170

RESUMO

NEW FINDINGS: What is the central question of this study? Do changes in myofibre cross-sectional area, pennation angle and fascicle length predict vastus lateralis whole-muscle cross-sectional area changes following resistance training? What is the main finding and its importance? Changes in vastus lateralis mean myofibre cross-sectional area, fascicle length and pennation angle following a period of resistance training did not collectively predict changes in whole-muscle cross-sectional area. Despite the limited sample size in this study, these data reiterate that it remains difficult to generalize the morphological adaptations that predominantly drive tissue-level vastus lateralis muscle hypertrophy. ABSTRACT: Myofibre hypertrophy during resistance training (RT) poorly associates with tissue-level surrogates of hypertrophy. However, it is underappreciated that, in pennate muscle, changes in myofibre cross-sectional area (fCSA), fascicle length (Lf ) and pennation angle (PA) likely coordinate changes in whole-muscle cross-sectional area (mCSA). Therefore, we determined if changes in fCSA, PA and Lf predicted vastus lateralis (VL) mCSA changes following RT. Thirteen untrained college-aged males (23 ± 4 years old, 25.4 ± 5.2 kg/m2 ) completed 7 weeks of full-body RT (twice weekly). Right leg VL ultrasound images and biopsies were obtained prior to (PRE) and 72 h following (POST) the last training bout. Regression was used to assess if training-induced changes in mean fCSA, PA and Lf predicted VL mCSA changes. Correlations were also performed between PRE-to-POST changes in obtained variables. Mean fCSA (+18%), PA (+8%) and mCSA (+22%) increased following RT (P < 0.05), but not Lf (0.1%, P = 0.772). Changes in fCSA, Lf and PA did not collectively predict changes in mCSA (R2 = 0.282, adjusted R2 = 0.013, F3,8  = 1.050, P = 0.422). Moderate negative correlations existed for percentage changes in PA and Lf (r = -0.548, P = 0.052) and changes in fCSA and Lf (r = -0.649, P = 0.022), and all other associations were weak (|r| < 0.500). Although increases in mean fCSA, PA and VL mCSA were observed, inter-individual responses for each variable and limitations for each technique make it difficult to generalize the morphological adaptations that predominantly drive tissue-level VL muscle hypertrophy. However, the small subject pool is a significant limitation, and more research in this area is needed.


Assuntos
Músculo Quadríceps , Treinamento de Força , Masculino , Humanos , Adulto Jovem , Adulto , Músculo Quadríceps/fisiologia , Músculo Esquelético/fisiologia , Hipertrofia , Adaptação Fisiológica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...